By Charles Q. Choi | Live Science

Scientists have entangled a record 3,000 atoms. Here, an illustration showing a large number of atoms (purple) mutually entangled with one another. Credit: Christine Daniloff/MIT and Jose-Luis Olivares/MIT
Using a single particle of light, scientists have for the first time linked together thousands of atoms in a bizarre state known as quantum entanglement, where the behavior of the atoms would stay connected even if they were at opposite ends of the universe.
This finding, the largest number of particles that have ever been mutually entangled in an experiment, could lead to more precise atomic clocks, potentially helping to improve GPS, researchers say.
The behavior of all the known particles can be explained using quantum physics. A key feature of quantum physics is that the world becomes a fuzzy, surreal place at its very smallest levels. For instance, atoms and other fundamental building blocks of the universe actually exist in states of flux known as “superpositions,” meaning they can seemingly be located in two or more places at once. [5 of the Most Precise Clocks Ever Made]
One consequence of quantum physics is quantum entanglement, wherein multiple particles can essentially influence each other simultaneously regardless of distance. Einstein dismissed this seemingly impossible connection as “spooky action at a distance,” but numerous experiments have proven quantum entanglement is real, and it may serve as the foundation of advanced future technologies, such as incredibly powerful quantum computers and nigh-unhackable quantum encryption.
One key application of quantum entanglement is to enable extraordinarily precise atomic clocks, which are vital to GPS. “Today's atomic clocks have reached an almost unimaginable level of accuracy — the best would be less than a minute off if they ran since the Big Bang,” study co-author Vladan Vuletić, a quantum physicist at MIT, told Live Science.
Read the rest of the article at Live Science…