By | The Conversation
As the threat from the coronavirus grows, the Centers for Disease Control and Prevention and other public health officials are stressing the importance of hand-washing.
Prevention becomes essential to stopping the spread of the virus because there is no vaccine to prevent it and no anti-virals to treat it.
How can such a simple, low-tech solution make a difference?
Remember – coronavirus spreads easily by droplets from breathing, coughing and sneezing. As our hands touch many surfaces, they can pick up microbes, including viruses. Then by touching contaminated hands to your eyes, nose or mouth, the pathogens can infect the body.
As a microbiologist, I think a lot about the differences between microbes, such as bacteria and viruses, and how they interact with animal hosts to drive health or disease. I was shocked to read a study that indicated that 93.2% of 2,800 survey respondents did not wash their hands after coughing or sneezing.
Let me explain how washing your hands decreases the number of microbes on your hands and helps prevent the spread of infectious diseases.
Two-fisted approach
Bacteria and viruses are different in a number of ways. Bacteria are single-celled organisms that can reproduce on their own, while viruses constitute a core of genetic material encapsulated by a protein coat and can only reproduce by attaching themselves to host cells. Because viruses don’t have the organelles to reproduce, they “hijack” the cellular machinery of host cells to make multitudes of new viruses.
These differences are why antibiotics cannot kill viruses, which typically target specific structures in the cellular components of bacteria that are absent in viruses.
Despite their differences, however, the best way to prevent the disease of bacterial and viral pathogens alike is to effectively wash your hands.
There are two strategies for decreasing the number of microbes in your hands.
The first is to decrease the overall biomass of microbes – that is, decrease the number of bacteria, viruses and other types of microorganisms. We do this by lathering with soap and rinsing with water. Soap’s chemistry helps remove microorganisms from our hands by accentuating the slippery properties of our own skin.
The second strategy is to kill the microbes. We do this by using products with an antibacterial agent such as alcohol, chlorine, peroxides, chlorhexidine or triclosan. However, the efficacy of these agents can be variable depending on a given microbe.
Is soap and water enough?
Some academic work has shown that antibacterial soaps are more effective at reducing certain bacteria on soiled hands than soaps without them.
However, there’s a problem. Some bacterial cells on our hands may have genes that enable them to be resistant to a given antibacterial agent. This means that after the antibacterial agent kills some bacteria, the resistant strains remaining on the hands can flourish.
Further, the genes that allowed the bacteria to be resistant could pass along to other bacteria, causing more resistant strains. Even more important with respect to coronavirus, antibacterial agents, such as oral antibiotics, don’t kill viruses.
With this in mind, you may want to stick with plain old soap and water.