Source:D'Or Institute for Research and Education
It may sound like sci-fi, but mind-reading equipment are much closer to become a reality than most people can imagine. A new study carried out at D'Or Institute for Research and Education used a Magnetic Resonance (MR) machine to read participants' minds and find out what song they were listening to. The study, published today in Scientific Reports, contributes to the improvement of the technique and paves the way to new research on the reconstruction of auditory imagination and inner speech. In the clinical domain, it can enhance brain-computer interfaces in order to establish communication with locked-in syndrome patients.
In the experiment, six volunteers heard 40 pieces of classical music, rock, pop, jazz, and others. The neural fingerprint of each song on participants' brain was captured by the MR machine while a computer was learning to identify the brain patterns elicited by each musical piece. Musical features such as tonality, dynamics, rhythm, and timbre were taken into account by the computer.
After that, researchers expected that the computer would be able to do the opposite way: identify which song participants were listening to, based on their brain activity — a technique known as brain decoding. When confronted with two options, the computer showed up to 85% accuracy in identifying the correct song, which is a great performance, comparing to previous studies.
Researchers then pushed the test even harder by providing not two but 10 options (e.g. one correct and nine wrong) to the computer. In this scenario, the computer correctly identified the song in 74% of the decisions.
In the future, studies on brain decoding and machine learning will create possibilities of communication regardless of any kind of written or spoken language. “Machines will be able to translate our musical thoughts into songs,” says Sebastian Hoefle, a researcher from D'Or Institute and Ph.D. student from Federal University of Rio de Janeiro, Brazil. The study is a result of a collaboration between Brazilian researchers and colleagues from Germany, Finland, and India.
According to Hoefle, brain decoding researches provide alternatives to understand neural functioning and interact with it using artificial intelligence. In the future, he expects to find answers for questions like “what musical features make some people love a song while others don't? Is our brain adapted to prefer a specific kind of music?”
Story Source:
Materials provided by D'Or Institute for Research and Education. Note: Content may be edited for style and length.
Journal Reference:
- Sebastian Hoefle, Annerose Engel, Rodrigo Basilio, Vinoo Alluri, Petri Toiviainen, Maurício Cagy, Jorge Moll. Identifying musical pieces from fMRI data using encoding and decoding models. Scientific Reports, 2018; 8 (1) DOI: 10.1038/s41598-018-20732-3