1

Humans Mysteriously Appeared 200,000 Years Ago | Gregg Braden

Video Source: Inspired

According to Gregg Braden, science now confirms that modern humans are NOT a product of evolution. We mysteriously appeared 200,000 years ago and all evidence points to some sort of higher intervention.

Gregg Braden is one of today’s leading scientists and mystics. He speaks of the wisdom of the past and how a new time in our history has arrived.




Scientists Revise Timeline of Human Origins

Phys

Between 2.1 and 1.8 million years ago, the oldest known species of the human genus, Homo, exhibited diverse traits. These species include the 1470 Group and the 1813 Group, based on the Kenyan fossils KNM-ER 1470 (left) and KNM-ER 1813 (second from left), respectively. By 1.8 to 1.9 million years ago, the species Homo erectus had evolved in Africa and started to spread to Eurasia. Early populations of this long-lived species are represented by the Kenyan fossil KNMER 3733 (right) and the Georgian fossil Dmanisi Skull 5 (second from right). The three lineages -- the 1470 group, the 1813 group, and Homo erectus -- overlapped in time for several hundred thousand years. The Kenyan fossils, from the site of Koobi Fora in the Lake Turkana region of Kenya, are housed in the National Museums of Kenya. Fossils from Dmanisi are housed in the Georgian National Museum. Credit: Kenyan fossil casts – Chip Clark, Smithsonian Human Origins Program; Dmanisi Skull 5 – Guram Bumbiashvili, Georgian National Museum

Between 2.1 and 1.8 million years ago, the oldest known species of the human genus, Homo, exhibited diverse traits. These species include the 1470 Group and the 1813 Group, based on the Kenyan fossils KNM-ER 1470 (left) and KNM-ER 1813 (second from left), respectively. By 1.8 to 1.9 million years ago, the species Homo erectus had evolved in Africa and started to spread to Eurasia. Early populations of this long-lived species are represented by the Kenyan fossil KNMER 3733 (right) and the Georgian fossil Dmanisi Skull 5 (second from right). The three lineages — the 1470 group, the 1813 group, and Homo erectus — overlapped in time for several hundred thousand years. The Kenyan fossils, from the site of Koobi Fora in the Lake Turkana region of Kenya, are housed in the National Museums of Kenya. Fossils from Dmanisi are housed in the Georgian National Museum. Credit: Kenyan fossil casts – Chip Clark, Smithsonian Human Origins Program; Dmanisi Skull 5 – Guram Bumbiashvili, Georgian National Museum

Many traits unique to humans were long thought to have originated in the genus Homo between 2.4 and 1.8 million years ago in Africa. Although scientists have recognized these characteristics for decades, they are reconsidering the true evolutionary factors that drove them.

A large brain, long legs, the ability to craft tools and prolonged maturation periods were all thought to have evolved together at the start of the Homo lineage as African grasslands expanded and Earth’s climate became cooler and drier. However, new climate and fossil evidence analyzed by a team of researchers, including Smithsonian paleoanthropologist Richard Potts, Susan Antón, professor of anthropology at New York University, and Leslie Aiello, president of the Wenner-Gren Foundation for Anthropological Research, suggests that these traits did not arise as a single package. Rather, several key ingredients once thought to define Homoevolved in earlier Australopithecus ancestors between 3 and 4 million years ago, while others emerged significantly later.

The team’s research takes an innovative approach to integrating paleoclimate data, new fossils and understandings of the genus Homo, archaeological remains and biological studies of a wide range of mammals (including humans). The synthesis of these data led the team to conclude that the ability of early humans to adjust to changing conditions ultimately enabled the earliest species of Homo to vary, survive and begin spreading from Africa to Eurasia 1.85 million years ago. Additional information about this study is available in the July 4 issue of Science.

Potts developed a new climate framework for East African human evolution that depicts most of the era from 2.5 million to 1.5 million years ago as a time of strong climate instability and shifting intensity of annual wet and dry seasons. This framework, which is based on Earth’s astronomical cycles, provides the basis for some of the paper’s key findings, and it suggests that multiple coexisting species of Homo that overlapped geographically emerged in highly changing environments.

Scientists revise timeline of human origins
Hominin evolution from 3.0 to 1.5 Ma. Green: Australopithecus, Yellow: Paranthropus, Red: Homo. The icons indicate from the bottom the first appearance of stone tools at ~2.6 Ma, the dispersal of Homo to Eurasia at ~1.85 Ma, and the appearance of the Acheulean technology at ~1.76 Ma. The number of contemporaneous hominin taxa during this period reflects different strategies of adaptation to habitat variability. The cultural milestones do not correlate with the known first appearances of any of the currently recognized Homo taxa. Credit: Antón et al., Science, 2014

“Unstable climate conditions favored the evolution of the roots of human flexibility in our ancestors,” said Potts, curator of anthropology and director of the Human Origins Program at the Smithsonian’s National Museum of Natural History. “The narrative of human evolution that arises from our analyses stresses the importance of adaptability to changing environments, rather than adaptation to any one environment, in the early success of the genus Homo.”

The team reviewed the entire body of fossil evidence relevant to the origin of Homo to better understand how the human genus evolved. For example, five skulls about 1.8 million years old from the site of Dmanisi, Republic of Georgia, show variations in traits typically seen in African H. erectus but differ from defining traits of other species of early Homo known only in Africa. Recently discovered skeletons of Australopithecus sediba (about 1.98 million years old) from Malapa, South Africa, also include someHomo-like features in its teeth and hands, while displaying unique, non-Homo traits in its skull and feet. Comparison of these fossils with the rich fossil record of East Africa indicates that the early diversification of the genus Homo was a period of morphological experimentation. Multiple species of Homo lived concurrently.

[read full post here]