New Evidence of How and When the Milky Way Came Together

Spiral galaxy illustration.
Credit: © AlexMit / 123RF.com

By Jeff Grabmeier | Science Daily

New research provides the best evidence to date into the timing of how our early Milky Way came together, including the merger with a key satellite galaxy.

Using relatively new methods in astronomy, the researchers were able to identify the most precise ages currently possible for a sample of about a hundred red giant stars in the galaxy.

With this and other data, the researchers were able to show what was happening when the Milky Way merged with an orbiting satellite galaxy, known as Gaia-Enceladus, about 10 billion years ago.

Their results were published today (May 17, 2021) in the journal Nature Astronomy.

“Our evidence suggests that when the merger occurred, the Milky Way had already formed a large population of its own stars,” said Fiorenzo Vincenzo, co-author of the study and a fellow in The Ohio State University’s Center for Cosmology and Astroparticle Physics.

Many of those “homemade” stars ended up in the thick disc in the middle of the galaxy, while most that were captured from Gaia-Enceladus are in the outer halo of the galaxy.

“The merging event with Gaia-Enceladus is thought to be one of the most important in the Milky Way’s history, shaping how we observe it today,” said Josefina Montalban, with the School of Physics and Astronomy at the University of Birmingham in the U.K., who led the project.

By calculating the age of the stars, the researchers were able to determine, for the first time, that the stars captured from Gaia-Enceladus have similar or slightly younger ages compared to the majority of stars that were born inside the Milky Way.

A violent merger between two galaxies can’t help but shake things up, Vincenzo said. Results showed that the merger changed the orbits of the stars already in the galaxy, making them more eccentric.

Vincenzo compared the stars’ movements to a dance, where the stars from the former Gaia-Enceladus move differently than those born within the Milky Way. The stars even “dress” differently, Vincenzo said, with stars from outside showing different chemical compositions from those born inside the Milky Way.

The researchers used several different approaches and data sources to conduct their study.

The researchers were able to get such precise ages of the stars through the use of asteroseismology, a relatively new field that probes the internal structure of stars.

Asteroseismologists study oscillations in stars, which are sound waves that ripple through their interiors, said Mathieu Vrard, a postdoctoral research associate in Ohio State’s Department of Astronomy.

“That allows us to get very precise ages for the stars, which are important in determining the chronology of when events happened in the early Milky Way,” Vrard said.

The study also used a spectroscopic survey, called APOGEE, which provides the chemical composition of stars — another aid in determining their ages.

“We have shown the great potential of asteroseismology, in combination with spectroscopy, to age-date individual stars,” Montalban said.

This study is just the first step, according to the researchers.

“We now intend to apply this approach to larger samples of stars, and to include even more subtle features of the frequency spectra,” Vincenzo said.

“This will eventually lead to a much sharper view of the Milky Way’s assembly history and evolution, creating a timeline of how our galaxy developed.”

The work is the result of the collaborative Asterochronometry project, funded by the European Research Council.

Story Source:

Materials provided by Ohio State University. Originally written by Jeff Grabmeier.

Journal Reference:

  1. Josefina Montalbán, J. Ted Mackereth, Andrea Miglio, Fiorenzo Vincenzo, Cristina Chiappini, Gael Buldgen, Benoît Mosser, Arlette Noels, Richard Scuflaire, Mathieu Vrard, Emma Willett, Guy R. Davies, Oliver J. Hall, Martin Bo Nielsen, Saniya Khan, Ben M. Rendle, Walter E. van Rossem, Jason W. Ferguson, William J. Chaplin. Chronologically dating the early assembly of the Milky WayNature Astronomy, 2021; DOI: 10.1038/s41550-021-01347-7

Milky Way’s Origins Are Not What They Seem

Pair of nearby galaxies with possible intergalactic transfer: This image shows M81 (bottom right) and M82 (upper left), a pair of nearby galaxies where ‘intergalactic transfer’ may be happening. Gas ejected by supernova explosions in M82 can travel through space and eventually contribute to the growth of M81. Credit: Fred Herrmann, 2014, cs.astronomy.com/asy/m/galaxies/489483.aspx
Read more at: https://phys.org/news/2017-07-milky.html#jCp

Source: Phys.org

In a first-of-its-kind analysis, Northwestern University astrophysicists have discovered that, contrary to previously standard lore, up to half of the matter in our Milky Way galaxy may come from distant galaxies. As a result, each one of us may be made in part from extragalactic matter.

Using supercomputer simulations, the research team found a major and unexpected new mode for how galaxies, including our own Milky Way, acquired their : intergalactic transfer. The simulations show that supernova explosions eject copious amounts of gas from galaxies, which causes atoms to be transported from one galaxy to another via powerful . Intergalactic transfer is a newly identified phenomenon, which simulations indicate will be critical for understanding how galaxies evolve.

“Given how much of the matter out of which we formed may have come from other galaxies, we could consider ourselves space travelers or extragalactic immigrants,” said Daniel Anglés-Alcázar, a postdoctoral fellow in Northwestern’s astrophysics center, CIERA (Center for Interdisciplinary Exploration and Research in Astrophysics), who led the study. “It is likely that much of the Milky Way’s matter was in other galaxies before it was kicked out by a powerful wind, traveled across intergalactic space and eventually found its new home in the Milky Way.”

Galaxies are far apart from each other, so even though galactic winds propagate at several hundred kilometers per second, this process occurred over several billion years.

Professor Claude-André Faucher-Giguère and his research group, along with collaborators from the FIRE (“Feedback In Realistic Environments”) project, which he co-leads, had developed sophisticated numerical simulations that produced realistic 3-D models of galaxies, following a galaxy’s formation from just after the Big Bang to the present day. Anglés-Alcázar then developed state-of-the-art algorithms to mine this wealth of data and quantify how galaxies acquire matter from the universe.

Milky Way's origins are not what they seem

A Milky Way-like galaxy (Messier 101): A close-up view of the Messier 101 galaxy, which is a spiral galaxy similar to the Milky Way galaxy. The Messier 101 has a pancake-like shape that we view face-on. This perspective shows off the spiral structure that gives it the nickname the “Pinwheel Galaxy.” Credit: NASA

The study, which required the equivalent of several million hours of continuous computing, will be published July 26 (July 27 in the U.K.) by the Monthly Notices of the Royal Astronomical Society.

“This study transforms our understanding of how galaxies formed from the Big Bang,” said Faucher-Giguère, a co-author of the study and assistant professor of physics and astronomy in the Weinberg College of Arts and Sciences.

“What this new mode implies is that up to one-half of the atoms around us—including in the solar system, on Earth and in each one of us—comes not from our own galaxy but from other galaxies, up to one million light years away,” he said.

By tracking in detail the complex flows of matter in the simulations, the research team found that gas flows from smaller galaxies to larger galaxies, such as the Milky Way, where the gas forms stars. This transfer of mass through galactic winds can account for up to 50 percent of matter in the larger galaxies.

“In our simulations, we were able to trace the origins of stars in Milky Way-like galaxies and determine if the star formed from matter endemic to the galaxy itself or if it formed instead from gas previously contained in another galaxy,” said Anglés-Alcázar, the study’s corresponding author.