By Jennifer Langston | Phys.org
University of Washington researchers have invented a cellphone that requires no batteries—a major leap forward in moving beyond chargers, cords and dying phones. Instead, the phone harvests the few microwatts of power it requires from either ambient radio signals or light.
The team also made Skype calls using its battery-free phone, demonstrating that the prototype made of commercial, off-the-shelf components can receive and transmit speech and communicate with a base station.
The new technology is detailed in a paper published July 1 in the Proceedings of the Association for Computing Machinery on Interactive, Mobile, Wearable and Ubiquitous Technologies.
“We've built what we believe is the first functioning cellphone that consumes almost zero power,” said co-author Shyam Gollakota, an associate professor in the Paul G. Allen School of Computer Science & Engineering at the UW. “To achieve the really, really low power consumption that you need to run a phone by harvesting energy from the environment, we had to fundamentally rethink how these devices are designed.”
The team of UW computer scientists and electrical engineers eliminated a power-hungry step in most modern cellular transmissions—converting analog signals that convey sound into digital data that a phone can understand. This process consumes so much energy that it's been impossible to design a phone that can rely on ambient power sources.
In the above video, University of Washington engineers present the first battery-free cellphone design that consumes only a few micro-watts of power. The new design can sense speech, actuate the earphones, and switch between uplink and downlink communications, all in real time. The system developed by researchers from the Allen School of Computer Science & Engineering and the UW Department of Electrical Engineering optimizes transmission and reception of speech while simultaneously harvesting power which enables the battery-free cellphone to operate continuously. Credit: Paul G. Allen School of Computer Science & Engineering
Instead, the battery-free cellphone takes advantage of tiny vibrations in a phone's microphone or speaker that occur when a person is talking into a phone or listening to a call.
An antenna connected to those components converts that motion into changes in standard analog radio signal emitted by a cellular base station. This process essentially encodes speech patterns in reflected radio signals in a way that uses almost no power.
To transmit speech, the phone uses vibrations from the device's microphone to encode speech patterns in the reflected signals. To receive speech, it converts encoded radio signals into sound vibrations that that are picked up by the phone's speaker. In the prototype device, the user presses a button to switch between these two “transmitting” and “listening” modes.
Using off-the-shelf components on a printed circuit board, the team demonstrated that the prototype can perform basic phone functions—transmitting speech and data and receiving user input via buttons. Using Skype, researchers were able to receive incoming calls, dial out and place callers on hold with the battery-free phone.
“The cellphone is the device we depend on most today. So if there were one device you'd want to be able to use without batteries, it is the cellphone,” said faculty lead Joshua Smith, professor in both the Allen School and UW's Department of Electrical Engineering. “The proof of concept we've developed is exciting today, and we think it could impact everyday devices in the future.”