1

Artisan Robots with AI Smarts Will Juggle Tasks, Choose Tools, Mix and Match Recipes and Even Order Materials – All Without Human Help

Failure of a machine in a factory can shut it down. Lost production can cost millions of dollars per day. Component failures can devastate factories, power plants and battlefield equipment.

To return to operation, skilled technicians use all the tools in their kit – machining, bending, welding and surface treating, making just the right part as quickly and as accurately as possible. But there’s a declining number of technicians with the right skills, and the quality of things made by hand is subject to the skills and mood of the artisan on the day the part is made.

Both problems could soon be solved by artificially intelligent robotic technicians. These systems can take measurements; shape, cut or weld parts using varied tools; pass parts to specialized equipment; and even purchase needed materials – all without human intervention. Known as hybrid autonomous manufacturing, this process involves automated systems that seamlessly use multiple tools and techniques to build high-quality components where and when they are needed.

I am a professor of metallurgical engineering. My colleagues and I design the recipes to make materials and components with just the right internal structure to create properties like strength and fracture resistance. With a network of colleagues at Ohio State and other universities, I have been developing a plan to give birth to these autonomous artisans.

How things are made

Components are either mass-produced or custom-made.

Most things people touch daily have been mass-produced. Quality is assured by using well-honed processes based on testing and monitoring large numbers of parts and assuring the process is done the same way every time.

Custom fabrication – making components on demand – is often essential, sometimes to conform to a patient’s specific anatomy or to replace aircraft landing gear that was forged and is no longer being made. Processes for making metallic parts – material removal, deposition, deformation, transformation, inspection – can all be done with small tools, with incremental actions rather than the kind of bulk processes, usually with big tools and dies, used in mass production.

Automation has long been a part of mass production, which includes sophisticated robots that handle parts and weld on automobile assembly lines. Additive manufacturing, often referred to as 3D printing, is increasingly being used with a variety of materials to make components.

Now in development are robotic blacksmiths – robots that can hammer metallic parts into shape instead of cutting, building up or molding them.

Robotic arms reach into the frame of a car being manufactured

Robots have been building cars for decades, but they typically carry out simple, repetitive tasks that don’t require decision-making. Lenny Kuhne/Unsplash

Automated customization – not an oxymoron

To automate custom fabrication, my colleagues and I are developing an automated suite of tools that can carry out all the steps for making a wide range of components, using multiple processes without human intervention. Sensors will also be central to hybrid autonomous manufacturing to control the processes and maintain and assure quality.

Such autonomous manufacturing systems will make the myriad decisions needed to create a component of the right strength, size and surface finish. Artificial intelligence will be required to handle the enormous number of choices of materials, machine settings and process sequences. Rather than finding a mass production recipe and never deviating, these autonomous manufacturing systems will choose from a very large set of possible recipes to create parts, and will have the intelligence to assure that the chosen path produces components with the appropriate material properties.

Robots could either position small tools on manufactured component or transfer the component from one piece of equipment to another. A fully autonomous system could manufacture a wide range of products with a versatile set of tools. The systems could source materials and possibly even send work out to specialized cutting and deformation tools, just like a human artisan.

The production rate of such systems would not rival those of mass production, but because robots can work continuously they can be more productive than human technicians are. Data from sensors provide a digital record of all the steps and processes with critical temperatures, machine settings and even images. This record can assure quality by, for example, making sure the material was deformed the right amount and cracks were not produced during the process and covered up.

Manufacturing at or near the operating room is one example of a process that can be enabled with hybrid autonomous manufacturing. Often when patients with bone fractures undergo trauma surgery, metallic plates of varied shapes are required to hold bones together for healing. These are often created in the operating room, where the surgeon bends plates to fit the patient, sometimes using a 3D-printed model created from medical images of the patient as a form to bend the metal against.

Bending by hand is slow and imprecise, and stressing the plate in the wrong place can cause it to fracture. A robotic technician could cut and bend and finish a plate before surgery. Patients do better and save money if they spend less time in the hospital.

The road to robotic artisans

Numerous companies are now showing the way forward in autonomous manufacturing, including three venture-funded startups. FormLogic is developing automated high-quality machine shops. Path Robotics is putting the skills of a welder into a robot. And Machina Labs is out to create robotic blacksmiths. Other companies are developing systems to automate design and logistics.

Hybridization – the ability to carry out different tasks in different ways with multiple tools – is the next step. The key pieces of hybrid autonomous manufacturing exist now, and fully autonomous systems could be common in a decade. Companies adopting this approach to custom fabrication will need to draw on a new generation of students with the skills to combine these technologies.

The investments proposed in the United States Innovation and Competition Act passed by the Senate on June 8, 2021, and those in the Biden administration’s proposed American Jobs Plan could support the development of these kinds of advanced manufacturing technologies. Funds for the development of advanced manufacturing technologies and the associated skills base could make U.S. manufacturing more competitive.

This article is republished from The Conversation, a nonprofit news site dedicated to sharing ideas from academic experts. It was written by: , The Ohio State University

About the Author
Glenn S. Daehn has received funding from the National Science Foundation and serves on the Advisory Board of FormLogic.




Robots Are Coming for Millions of Blue-Collar Jobs… But Won’t Stop There

Some people find hunting for sport to be abhorrent, so hunters have come up with euphemisms to make what they do sound gentler on the ears of the nonhunting public. For example, animals aren’t killed; they’re “harvested.” And dead prey is not gutted but “processed.”

Corporate America has taken note of this verbal ploy and is now adopting it, for CEOs urgently need euphemisms to soften the image of their constant hunt for ways to kill jobs and funnel more money to themselves and top investors. Their urgency is that they’re now pushing a huge new surge in job cuts—this time targeting college-educated, white-collar professionals! Their weapon is the same sort of neutron bomb they’ve used to dispatch millions of blue-collar workers: robots.

But that term has a very bad reputation, so robots have been relabeled with a nondescript acronym: RPA, “robotic process automation.” These are not your grandfather’s old bots merely doing repetitive mechanical tasks. Sophisticated automatons armed with artificial intelligence have quietly moved up the corporate ladder to take over cognitive work that had been the niche of such highly paid humans as financial analysts, lawyers, engineers, managers, and doctors.

McKinsey, the world’s biggest corporate strategy consultancy, calculated in 2019 that the emerging revolution of thinking robotics would displace 37 million U.S. workers by 2030. Now, seeing the current corporate stampede to impose RPAs on U.S. workplaces, McKinsey analysts have upped their projection to 45 million job losses by 2030.

This is more than just an incremental extension of a long, slow automation process. It’s a transformative Big Bang, presently ripping through America’s workforce at warp speed with no public or political attention, and most of the vulnerable employees have no idea of what’s coming.

Corporate executives, boards, and investors do know, however, for they’ve been rushing furtively in the past year or so to implement RPA initiatives. The New York Times reports that a survey of executives last year found that nearly 80% of them have already put some forms of RPA in place, with an additional 16% planning to do so within three years. Yes, that’s 96% of corporate employers. Sales of the new-age automation software are booming, turning little-known providers like UiPath and Automation Anywhere into multibillion-dollar behemoths intent on radically shrinking the job market here and elsewhere. McKinsey, the world’s biggest corporate strategy consultancy, calculated in 2019 that the emerging revolution of thinking robotics would displace 37 million U.S. workers by 2030. Now, seeing the current corporate stampede to impose RPAs on U.S. workplaces, McKinsey analysts have upped their projection to 45 million job losses by 2030.

Returning to the hunting analogy, professional jobs requiring human-level judgment have been presumed to be beyond the range of robotic firepower. But, as one economist who studies labor now notes, with the mass deployment of RPA technology, “that type of work is much more in the killing path.”

The corporate vocabulary does not include the phrase “job cuts.” Rather, such unpleasantness is blandly referred to as “employment adjustment.” Moreover, terminations are hailed as universally beneficial—they’re said to “streamline” operations and “liberate” the workforce from tedious tasks.

Now, though, corporate wordsmiths are going to need a new thesaurus of euphemisms to try glossing over the masses of job cuts coming for those in the higher echelons of the corporate structure. Don’t look now, but an unanticipated result of the ongoing pandemic is that it has given cover for CEOs to speed up the adoption of highly advanced RPAs to replace employees once assumed to be immune from displacement. As one analyst told a New York Times reporter, “With R.P.A., you can build a bot that costs $10,000 a year and take out two to four humans.”

Prior to the COVID-19 crisis, many top executives feared a public backlash if they pushed automation too far too fast. But, ironically, the economic collapse caused by the pandemic has so discombobulated the workplace and diverted public attention that corporate bosses have been emboldened to rush ahead, declaring, “I don’t really care. I’m just going to do what’s right for my business.” While the nationwide shutdown of offices and furloughing of employees has caused misery for millions, one purveyor of RPA systems approvingly notes that it has “‘massively raised awareness’ among executives about the variety of work that no longer requires human involvement,” The New York Times says. He cheerfully declares, “We think any business process can be automated,” and his firm advises corporate bosses that half to two-thirds of all the tasks being done at their companies can be done by machines.

Conventional corporate wisdom blithely preaches that all new technologies create more jobs than they kill, but even those Pollyannaish preachers are now conceding that this robotic automation of white-collar jobs is being imposed so suddenly, widely, and stealthily that losses will crush any gains. “We haven’t hit the exponential point of this stuff yet,” warns an alarmed analyst. “And when we do, it’s going to be dramatic.”

Jim Hightower

Jim Hightower is a national radio commentator, writer, public speaker, and author of the books “Swim Against The Current: Even A Dead Fish Can Go With The Flow (2008) and “There’s Nothing in the Middle of the Road But Yellow Stripes and Dead Armadillos: A Work of Political Subversion” (1998). Hightower has spent three decades battling the Powers That Be on behalf of the Powers That Ought To Be – consumers, working families, environmentalists, small businesses, and just-plain-folks.