Sedona Vortex Yoga with Yogi Blair is Streaming Online

Study Shows Even Earthworms Have Free Will

Written by on November 26, 2015 in Nature, Sci-Tech, Science with 0 Comments

By Andrew Gordus, Navin Pokala, Sagi Levy, Steven W. Flavell, Cornelia I. Bargmann | *Science Daily


FreeWill-17320288_m-680x380

Summary: Even worms have free will. If offered a delicious smell, for example, a roundworm will usually stop its wandering to investigate the source, but sometimes it won't. Just as with humans, the same stimulus does not always provoke the same response, even from the same individual.

New research at Rockefeller University, published online in Cell, offers a new neurological explanation for this variability, derived by studying a simple three-cell network within the roundworm brain.

“We found that the collective state of the three neurons at the exact moment an odor arrives determines the likelihood that the worm will move toward the smell. So, in essence, what the worm is thinking about at the time determines how it responds,” says study author Cori Bargmann, Torsten N. Wiesel Professor, head of the Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior. “It goes to show that nervous systems aren't passively waiting for signals from outside, they have their own internal patterns of activity that are as important as any external signal when it comes to generating a behavior.”

The researchers went a step deeper to tease out the dynamics within the network. By changing the activity of the neurons individually and in combination, first author Andrew Gordus, a research associate in the lab, and his colleagues could pinpoint each neuron's role in generating variability in both brain activity and the behavior associated with it.

The human brain has 86 billion neurons and 100 trillion synapses, or connections, among them. The brain of the microscopic roundworm Caenorhabditis elegans, by comparison, has 302 neurons and 7,000 synapses. So while the worm's brain cannot replicate the complexity of the human brain, scientists can use it to address tricky neurological questions that would be nearly impossible to broach in our own brains.


Worms spend their time wandering, looking for decomposing matter to eat. And when they smell it, they usually stop making random turns and travel straight toward the source. This change in behavior is initially triggered by a sensory neuron that perceives the smell and feeds that information to the network the researchers studied. As the worms pick up the alluring fruity smell of isoamyl alcohol, the neurons in the network transition into a low activity state that allows them to approach the odor. But sometimes the neurons remain highly active, and the worm continues to wander around — even though its sensory neuron has detected the odor.

By recording the activity of these neurons, Gordus and colleagues found that there were three persistent states among the three neurons: All were off, all were on, or only one, called AIB, was on. If all were off, then, when the odor signal arrived, they stayed off. If all were on, they often, but not always, shut off. And, in the third and most telling scenario, if AIB alone was active when the odor arrived, everything shut off. “This means that for AIB, context matters. If it's on alone, its activity will drop when odor is added, but if it's on with the rest of the network, it has difficulty dropping its activity with the others,” Gordus says.

AIB is the first neuron in the network to receive the signal, which it then relays to the other two network members, known as RIM and AVA; AVA sends out the final instruction to the muscles. When the researchers shut off RIM and AVA individually and together, they found AIB's response to the odor signal improved. This suggests that input from these two neurons competes with the sensory signal as it feeds down through the network.

[Read more here]

Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.

Journal Reference:

  1. Andrew Gordus, Navin Pokala, Sagi Levy, Steven W. Flavell, Cornelia I. Bargmann. Feedback from Network States Generates Variability in a Probabilistic Olfactory Circuit. Cell, 2015; DOI: 1016/j.cell.2015.02.018

*Originally titled: “Free will? Analysis of worm neurons suggest how a single stimulus can trigger different responses”

Robert O'Leary, JD BARA

Robert O’Leary, JD BARA, has had an abiding interest in alternative health products and modalities since the early 1970’s, and he has seen how they have made people go from lacking health to vibrant health. He became an attorney, singer-songwriter, martial artist and father along the way and brings that experience to his practice as a BioAcoustic Soundhealth Practitioner, under the tutelage of the award-winning founder of BioAcoustic Biology, Sharry Edwards, whose Institute of BioAcoustic Biology has now been serving clients for 30 years with a non-invasive and safe integrative modality that supports the body’s ability to self-heal using the power of the human voice. Robert brings this modality to serve clients in Greater Springfield (MA), New England and “virtually” the world, through his new website, www.romayasoundhealthandbeauty.com. He can also be reached at romayasoundhealthandbeauty@gmail.com

 

Tags: , , , , , , ,

Subscribe

If you enjoyed this article, subscribe now to receive more just like it.

Subscribe via RSS Feed Connect on YouTube

New Title

NOTE: Email is optional. Do NOT enter it if you do NOT want it displayed.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

FAIR USE NOTICE. Many of the articles on this site contain copyrighted material whose use has not been specifically authorized by the copyright owner. We are making this material available in an effort to advance the understanding of environmental issues, human rights, economic and political democracy, and issues of social justice. We believe this constitutes a 'fair use' of the copyrighted material as provided for in Section 107 of the US Copyright Law which contains a list of the various purposes for which the reproduction of a particular work may be considered fair, such as criticism, comment, news reporting, teaching, scholarship, and research. If you wish to use such copyrighted material for purposes of your own that go beyond 'fair use'...you must obtain permission from the copyright owner. And, if you are a copyright owner who wishes to have your content removed, let us know via the "Contact Us" link at the top of the site, and we will promptly remove it.

The information on this site is provided for educational and entertainment purposes only. It is not intended as a substitute for professional advice of any kind. Conscious Life News assumes no responsibility for the use or misuse of this material. Your use of this website indicates your agreement to these terms.

Paid advertising on Conscious Life News may not represent the views and opinions of this website and its contributors. No endorsement of products and services advertised is either expressed or implied.
Top
Send this to a friend