Quantum Dot Breakthrough Could Lead to Cheap Spray-on Solar Cells

Written by on June 11, 2014 in Eco-Friendly, Sci-Tech, Technology with 0 Comments

| Gizmag | June 11th 2014

A new type of quantum dot could lead to cheaper solar cells and better satellite communication (Image: University of Toronto)

A new type of quantum dot could lead to cheaper solar cells and better satellite communication (Image: University of Toronto)

Researchers at the University of Toronto have manufactured and tested a new type of colloidal quantum dots (CQD), that, unlike previous attempts, doesn't lose performance as they keep in contact with oxygen. The development could lead to much cheaper or even spray-on solar cells, as well as better LEDs, lasers and weather satellites.

Quantum dot solar cells

A quantum dot is a nanocrystal made out of a semicondutor material which is small enough to take advantage of the laws of quantum mechanics. Quantum dots are at the center of a very new and rapidly evolving field of research, with the promise for applications in highly efficient solar cells, transistors and lasers, among other things.

In the case of solar cells, quantum dots are used as the absorbing photovoltaic material. The dots have the advantage of having a band gapthat can be tuned simply by changing the size of the nanoparticles, and so they can be easily made to absorb different parts of the solar spectrum.

This makes them very attractive for multi-junction solar cells, where you could use a series of quantum dots of different size next to each other to absorb different areas of the spectrum. Crucially, this would drastically cut down the cost and complexity of manufacturing such cells.

The even less expensive option would be for single-junction quantum dot cells. Even here, using quantum dots has definite advantages. Because the band gap can be tuned at will, a single-junction cell can be made to absorb light in the far infrared, where half of the energy from our Sun lies. This would be challenging with standard solar cells, because we don't have materials with the adequate band gaps.

So far, the record efficiency for a quantum dot solar cell is only nine percent, which is roughly half the performance of commercial bulk silicon cells. However, this is a very new field in which progress has been both steady and rapid.

A better dot

Like in standard PV cells, CQD cells use p-type and n-type semiconductors to manipulate charge and generate electricity. However, the n-type quantum dot semiconductor tends to bind with oxygen atoms, giving up its electrons and turning into p-type, which renders the cell useless. N-type semiconductors made using soft matter are notoriously prone to oxidation within minutes of air exposure.

Now, a team led by post-doc researcher Zhijun Ning and Prof. Ted Sargent at the University of Toronto has manufactured and demonstrated a new type of CQD n-type lead-sulfide material that doesn't bind with oxygen, preserving the performance of the cell and opening up a world of new optoelectronic devices that capitalize on the best properties of both light and electricity, including better satellite communication and pollution detectors.

Ning, Sargent and colleagues tested a solar cell manufactured using their material, and achieved a high 8 percent efficiency, just shy of the current efficiency record for quantum dot cells.

[read full post here]

Tags: , , ,


If you enjoyed this article, subscribe now to receive more just like it.

Subscribe via RSS Feed Connect on YouTube

Leave a Reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

FAIR USE NOTICE. Many of the articles on this site contain copyrighted material whose use has not been specifically authorized by the copyright owner. We are making this material available in an effort to advance the understanding of environmental issues, human rights, economic and political democracy, and issues of social justice. We believe this constitutes a 'fair use' of the copyrighted material as provided for in Section 107 of the US Copyright Law which contains a list of the various purposes for which the reproduction of a particular work may be considered fair, such as criticism, comment, news reporting, teaching, scholarship, and research. If you wish to use such copyrighted material for purposes of your own that go beyond 'fair use'...you must obtain permission from the copyright owner. And, if you are a copyright owner who wishes to have your content removed, let us know via the "Contact Us" link at the top of the site, and we will promptly remove it.

The information on this site is provided for educational and entertainment purposes only. It is not intended as a substitute for professional advice of any kind. Conscious Life News assumes no responsibility for the use or misuse of this material. Your use of this website indicates your agreement to these terms.

Paid advertising on Conscious Life News may not represent the views and opinions of this website and its contributors. No endorsement of products and services advertised is either expressed or implied.
Send this to a friend