10 Top Conservation Tech Innovations From 2017

Posted by on January 6, 2018 in Eco-Friendly, Environment with 0 Comments

Ana Rodriguez-Prieto extracts DNA from wildlife samples using the GENE Expeditionlab at her team’s remote field site in the Democratic Republic of Congo. Anna Sustersic

By Sue Palmenteri | EcoWatch

Technology is changing how we investigate and protect planet Earth.

The increased portability and reduced cost of data collection and synthesis tools, for instance—from visual and acoustic sensors to DNA sequencers, online mapping platforms and apps for sharing photos—have rapidly transformed how we research and conserve the natural world.


These tools afford research and conservation projects across the globe an unprecedented capacity to access, collect, organize, analyze and convey information. But these new tools are being developed and deployed so quickly, it can be hard to stay on top of them all.

The still-intact Amazon rainforest in southeastern Peru. Amazon Aerobotany

Below, we review some of 2017’s conservation tech trends that have helped researchers and conservationists better understand their species and systems of interest, monitor their status and take actions to conserve them. We hope Mongabay-Wildtech’s coverage of their experiences will help readers advance their own projects and priorities.

A pair of saki monkeys approach an arboreal camera trap in the Peruvian rainforest.SCBI-CCS

Understand Target Species and Systems

1. Camera traps are remote cameras that take photos when a sensor is triggered by the movement of an animal or person and, increasingly, send the image in real-time to the operator. They have helped researchers document the presence of elusive wildlife for decades, but innovative scientists have begun to apply this technology to new environments and species. The installation of camera traps in trees, for example, has successfully documented canopy use by arboreal mammals. Wildtech’s coverage (our most popular post this year) includes the scientists’ proposed solutions to various challenges faced in deploying cameras in the canopy.


Studying species in the dark requires its own technology. Researchers in the U.S. adapted thermal imaging sensors—which detect the heat energy emitted by animals—to study hibernating bats in caves and their response to white-nose syndrome.

Hummingbird researchers adapted this popular technique by separating the sensor from the camera to give cameras time to film the tiny, fast-flying birds. The do-it-yourself system allowed the researchers to use their own high-speed video camera and multiple independent sensors to detect the birds at different flowers. The adaptable setup could help other studies where a specialized camera or sensors are needed.

The hummingbird camera trap trigger system setup connects a high-speed video camera (covered, on the left) to two sensors, one on either side of the target Heliconia flower, to detect and begin filming the bird before it reaches the flower. Rico-Guevara and Mickley (2017).

As the number of camera trap studies increases, so does the number of “bycatch” photos—pictures taken of species that are not the target of the study for which the camera traps were deployed. One research team has urged researchers to share their photos of non-target species, especially those for which few occupancy studies exist, for others to use. They also crafted suggestions for making bycatch photosets easier to find, search and utilize.

2. Automated bioacoustic monitoring devices remind us that animals make a lot of noise. Acoustic sensors can play a role similar to that of camera traps by recording the presence of animals through their sounds 24/7, at relatively low cost, and storing them in a web-based platform for users to manage and analyze the data.

They are particularly useful for aerial and underwater species that move in three dimensions, rather than along trails. For example, researchers in Mexico detected the decreasing number of vaquitas through acoustic monitoring of their home in the Gulf of California. Passive acoustic monitoring devices set at spawning locations have allowed researchers to measure fish abundance independent of catch data. Bioacoustics are increasingly helping scientists understand overall ecosystem health, even underwater.

Long-tongued bumble bee queens visit flowers of the alpine skypilot. Acoustic sensors can distinguish the distinctive flight buzz of these large bees, a bee version of a cargo-plane flying from flower to flower. Zoe Maffett

Above-ground, acoustic devices have helped researchers relate the buzz signatures of wild bees to their body measurements and pollination potential, as well as the composition of the bee community in a given area.

Acoustic sensors can also detect human sounds and alert authorities or local indigenous groups in near real-time when chainsaws are detected in their forest.

New users of these and other data-collection technologies can learn more from a comprehensive new online resource, launched in 2017, that details best practices for using specific technologies, including camera traps, acoustic monitoring and LiDAR.

3. Technology to collect, process and analyze genetic data has provided a third unique method of detecting species’ presence. A portable field lab called GENE was able to extract, amplify and sequence DNA even in the challenging field conditions of the Congo Basin. A separate research team also used real-time nanopore sequencing to develop a portable DNA sequencer to rapidly read the DNA of any organism, including plants.

Environmental DNA (eDNA)—collected from the environment (typically from skin, scales or scat) and thus non-invasive—is particularly helpful in searching for rare aquatic species and determining fish community diversity, which is difficult to survey manually.

DNA barcoding, which compares DNA samples of unknown identity to reference databases using a gene carried by all animals, has transformed species identification for researchers and wildlife officials alike. The RHODIS rhino database helps identify the origin of horn material carried by poachers or traders. Similarly, barcoding of even processed market specimens can help trade officials distinguish legal from illegal species: one study found that most shark and ray products are illegal. Recent breakthroughs in portability and barcoding technology have resulted in handheld DNA analysis devices that will help officials rapidly identify species from wildlife parts on site. Such knowledge is still just one aspect of tackling wildlife crime; application of DNA results in courts of law varies across countries, in part based on the system’s presumption of guilt or innocence.

4. Researchers are using detection dogs in creative ways to meet the challenge of finding samples of genetic material of specific species in the wild. With their amazing sense of smell, certain dogs can be trained to detect scat of multiple target wild species—as well as ammunition, snares, humans, chemicals and invasive plants—faster and more effectively than people can. Dogs and the DNA in the dung they find helped researchers define movement corridors for several threatened carnivores in Argentina.

5. Generating and accessing big data has also never been easier.

Existing handheld data collection tools, such as CyberTracker and Open Data Kit, have inspired development of mobile apps for collecting, managing, and compiling data sets on specific taxa and ecosystems. India’s M-STrIPES app enables field patrols to use smartphones to quickly collect and upload data on tigers and their prey to a central server to modernize the nation’s tiger population estimates.

Forest officials conduct an M-STrIPES app training exercise. Ashok Kumar

Fisheries, starting with the Pacific tuna fleet, are beginning to use onboard and portside mobile apps to document fish harvest in order to improve knowledge of population dynamics and transparency of fish catch across the fleet.

 

 

READ THE REST OF THIS ARTICLE….

Tags: , , , , ,

Subscribe

If you enjoyed this article, subscribe now to receive more just like it.

Subscribe via RSS Feed Connect on YouTube

New Title

NOTE: Email is optional. Do NOT enter it if you do NOT want it displayed.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

FAIR USE NOTICE. Many of the articles on this site contain copyrighted material whose use has not been specifically authorized by the copyright owner. We are making this material available in an effort to advance the understanding of environmental issues, human rights, economic and political democracy, and issues of social justice. We believe this constitutes a 'fair use' of the copyrighted material as provided for in Section 107 of the US Copyright Law which contains a list of the various purposes for which the reproduction of a particular work may be considered fair, such as criticism, comment, news reporting, teaching, scholarship, and research. If you wish to use such copyrighted material for purposes of your own that go beyond 'fair use'...you must obtain permission from the copyright owner. And, if you are a copyright owner who wishes to have your content removed, let us know via the "Contact Us" link at the top of the site, and we will promptly remove it.

The information on this site is provided for educational and entertainment purposes only. It is not intended as a substitute for professional advice of any kind. Conscious Life News assumes no responsibility for the use or misuse of this material. Your use of this website indicates your agreement to these terms.

Paid advertising on Conscious Life News may not represent the views and opinions of this website and its contributors. No endorsement of products and services advertised is either expressed or implied.
Top

Send this to a friend