Supermassive Black Hole Devours a Passing Star Creating the Biggest Blast Ever

Posted by on December 15, 2016 in Earth & Space, Sci-Tech with 0 Comments

Video Source: Above Science

Last year, the brightest supernova event ever detected was observed. From four billion light years away, a single point in a distant galaxy spontaneously brightened, rose to a peak outshining the entire galaxy, and gradually faded away. At its most luminous, it was twice as bright as any other supernova previously seen, and was 20 times as intrinsically bright as all the stars in the Milky Way combined. Known as ASASSN-15lh, it was first thought to be a supergiant star that went hypernova, over 100 times as bright as a typical supernova. But follow-up observations with Hubble showed this couldn’t be the case at all; the afterglow signals were all wrong in detail. Instead, an even rarer model fits the data best: a spinning black hole devouring a passing star!

Supernovae come in a variety of brightnesses, with the most luminous ones triggered when the core of a massive star collapses. The rapid collapse causes the temperature inside the dying star to skyrocket, resulting in a runaway fusion reaction. Typically, the innermost regions collapse down to a neutron star or a black hole, while the outer layers are expelled close to the speed of light. In the brightest cases of all, the energies inside get so large that photons spontaneously produce pairs of matter and antimatter, lowering the pressure even further and igniting the most intense collapse of all. The runaway reaction that ensues produce copious amounts of new nuclei, enabling the formation of elements all the way up the periodic table, and creating radioactive sources that cause supernova remnants to shine brightly for decades or even centuries after the explosion.

But what this objects showed was different. Supernovae not only emit characteristic signals in terms of brightening, reaching a peak and fading away in the optical, but also display signatures in the X-ray and infrared. This object is too distant for detailed X-ray observations, but was observed in ultraviolet/optical/infrared detail over a 10 month period by the Very Large Telescope, by Hubble, and by ESO’s New Technology Telescope. What they found was a signature that was inconsistent with any known type of supernova. Moreover, even models that represented exotic scenarios couldn’t reproduce the features seen in ASASSN-15lh.

Sometimes, however, a failure to line up with anything seen before can be even more interesting than what would have been the brightest supernova of all time. While supernovae have a gradual rise to a peak and then slowly fall off, this event showed multiple distinct phases, including a puzzling surprise: a rapid re-brightening in the ultraviolet. In addition, the brightest supernovae are always seen to occur in luminous, blue, rapidly star-forming galaxies, since that’s where the most massive stars are created and found. But the galaxy housing ASASSN-15lh is red and of average brightness only; there are no spectacularly large stars inside. In no instances do bright supernovae form in regions like this or exhibit an ultraviolet rebrightening; something else must have been at play.

But all is not lost, as there is a model that fits! Almost every galaxy, even quiet, red ones, contain supermassive black holes at their core. When matter approaches — whether an asteroid, planet, gas cloud or a star — the incredible tidal forces stretch and pinch it, tearing it apart into a long, thin strand. Some of these black holes can rotate incredibly rapidly, causing the matter that falls in to accelerate at different rates depending on the orientation and configuration of the infall, which changes over time. The ASASSN-15lh event not only showed an ultraviolet re-brightening, but a rapid temperature spike at late times as well. If the explanation pans out, this would be the first time we’ve ever observed a rare event of this kind: a massive star disrupted and devoured by an ultramassive, rapidly spinning supermassive black hole.

Classic, non-rotating disruptions as well as all known supernova models have been ruled out as possible explanations, as the light signatures simply fail to match the physical predictions. But quite surprisingly, a rapidly rotating black hole of 100 million solar masses or more could reproduce the observations simply by devouring a relatively low-mass, Sun-like star. As Giorgos Leloudas describes:

We observed the source for 10 months following the event and have concluded that the explanation is unlikely to lie with an extraordinary bright supernova. Our results indicate that the event was probably caused by a rapidly spinning supermassive black hole as it destroyed a low-mass star.
This is no supernova; this is no luminous flare. This is unlike anything we’ve ever seen before, and it’s likely because rapidly rotating supermassive black holes are the exception, rather than the rule.

References: Spinning Black Hole Swallows Star, Surpasses All Supernovae In Brightness

Tags: , , , , ,


If you enjoyed this article, subscribe now to receive more just like it.

Subscribe via RSS FeedConnect on YouTube

Leave a Reply

Your email address will not be published. Required fields are marked *

FAIR USE NOTICE. Many of the stories on this site contain copyrighted material whose use has not been specifically authorized by the copyright owner. We are making this material available in an effort to advance the understanding of environmental issues, human rights, economic and political democracy, and issues of social justice. We believe this constitutes a 'fair use' of the copyrighted material as provided for in Section 107 of the US Copyright Law which contains a list of the various purposes for which the reproduction of a particular work may be considered fair, such as criticism, comment, news reporting, teaching, scholarship, and research. If you wish to use such copyrighted material for purposes of your own that go beyond 'fair use' must obtain permission from the copyright owner. And, if you are a copyright owner who wishes to have your content removed, let us know via the "Contact Us" link at the top of the site, and we will promptly remove it.

The information on this site is provided for educational and entertainment purposes only. It is not intended as a substitute for professional advice of any kind. Conscious Life News assumes no responsibility for the use or misuse of this material. Your use of this website indicates your agreement to these terms.

Paid advertising on Conscious Life News may not represent the views and opinions of this website and its contributors. No endorsement of products and services advertised is either expressed or implied.

Send this to friend